听说关注了IPENGLISH的同学都考到了高分哦
无限猴子理论🐒
黄威老师
雅培英语名师
Retell Lecture
那么在讲这道题之前,我们先来想象一下什么是无限:
我们每一次触摸一个物体时,都会有若干个粒子逃离我们的身体。
比如我们在摸一扇墙的时候,会有若干个粒子穿墙而过。那么,有没有可能在某一次,我们身体的所有粒子同时都穿墙而过呢?
理论上来说是有的,人类的身体平均有7*1027个粒子组成。那么所有粒子同时穿墙而过的机率为1/7*1027 (其实比这个数字要小很多)。
那么假设我们以每秒一次的频率撞墙,则需要撞20亿亿年才有可能有一次机会整个人穿墙而过。
然而整个宇宙的岁数也才130多亿年而已。
所以这个机率几乎接近于无限小,然而又不是‘0’。
同理,一只猴子敲击键盘敲出完整莎士比亚巨作的机率也是几乎为0,但是又不是0。科学家就是通过这样无限接近的推断来推导无限的概念的。
那么带着这个概念我们来看一下这篇文章吧:(非准确原文,为维基百科解释)
Infinite Monkey Theorem
The infinite monkey theorem states that a monkey hitting keys at random on a typewriter keyboard for an infinite amount of time will almost surely type any given text, such as the complete works of William Shakespeare. In fact, the monkey would almost surely type every possible finite text an infinite number of times. However, the probability that monkeys filling the observable universe would type a complete work such as Shakespeare's Hamlet is so tiny that the chance of it occurring during a period of time hundreds of thousands of orders of magnitude longer than the age of the universe is extremely low (but technically not zero).
In this context, "almost surely" is a mathematical term with a precise meaning, and the "monkey" is not an actual monkey, but a metaphor for an abstract device that produces an endless random sequence of letters and symbols. One of the earliest instances of the use of the "monkey metaphor" is that of French mathematician Émile Borel in 1913, but the first instance may have been even earlier.
那么现在这篇文章就就很好理解了:
核心内容为:With infinite time, a monkey can type any given text by typing a typewriter randomly. It can be used to imagine infinity by using vast number.
在这个核心内容理解的情况下,即便机经无法回忆出原文,考试时也可以根据该内容理解其要点。PTE现在的机经量已经逐渐达到了一个背不完的数量级了。与其泛泛而背,不如理解重点题型的核心主旨,这样才能以不变应万变。
以下链接为YouTube频道‘Numberphile’对于无限小(类似无限猴子理论)
的一期播客《The Opposite of Infinity - Numberphile》
https://www.youtube.com/watch?v=WYijIV5JrKg
该频道内有各种顶尖数学家用最通俗的语言解释高深的数学原理,可以用于练习学术文章泛听能力的训练
华裔天才数学家陶哲轩也有主持哦!
更多课程详情请咨询
IP English,
墨尔本专业的英语培训机构!
雅培英语 - IP English
咨询电话:0402187061
黄老师
咨询微信:ipenglishmel