数据分析这个技能,到底能不能速成?

2018年05月24日 Infinity澳洲职业咨询


没有任何牛逼的事情是能够速成的,越是像数据分析这种收益周期长的技能,越是这样。


但这并不代表,我们不能用一些有意思的方式,把学习的过程变得高效而有趣。这篇文章是要给所有正在学习数据分析,甚至还没入门的同学一个高效的学习路径,让更多人可以平滑地、高效地成为专业数据分析师。


如果你要成为数据分析师,那么你可以去招聘网站看看,对应的职位的需求是什么,一般来说你就会对知识体系有初步的了解。企业对技能需求可总结如下:


1、SQL数据库的基本操作,会基本的数据管理

2、会用Excel/SQL做基本的数据提取、分析和展示

3、会用脚本语言进行数据分析,Python or R

4、有获取外部数据的能力加分,如爬虫或熟悉公开数据集

5、会基本的数据可视化技能,能撰写数据报告

6、熟悉常用的数据挖掘算法:回归分析、决策树、分类、聚类方法



其次是数据分析的流程,一般可以按“数据获取—数据存储与提取—数据预处理—数据建模与分析—数据可视化”这样的步骤来实施一个数据分析项目。按照这个流程,每个部分需要掌握的细分知识点如下:


高效的学习路径是什么?就是数据分析的这个流程。按这样的顺序循序渐进,你会知道每个部分需要完成的目标是什么,需要学习哪些知识点,哪些知识是暂时不必要的。


每学习一个部分,你就能够有一些实际的成果输出,有正向的反馈,你才会愿意花更多的时间投入进去。以解决问题为目标,效率自然不会低。


按照上面的流程,我们总结学习路径如下:


  • python基础知识

  • python爬虫

  • SQL语言

  • python科学计算包:pandas、numpy、scikit-learn

  • 统计学基础

  • 回归分析方法

  • 数据挖掘基本算法:分类、聚类

  • 模型优化:特征提取

  • 数据可视化:seaborn、matplotlib


接下来我们分别从每一个部分讲讲具体应该学什么、怎么学。


数据获取:公开数据、Python爬虫


如果接触的只是企业数据库里的数据,不需要要获取外部数据的,这个部分可以忽略。但还是建议每一个数据分析师,都兼备外部数据获取的能力。      

 

外部数据的获取方式主要有以下两种。


第一种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。


这些数据集通常比较完善、质量相对较高。给大家推荐一些常用的可以获取数据集的网站:


UCI:加州大学欧文分校开放的经典数据集,被很多数据挖掘实验室采用。

http://archive.ics.uci.edu/ml/datasets.html


国家数据:数据来源于中国国家统计局,包含了我国经济民生等多个方面的数据。

http://data.stats.gov.cn/


CEIC:超过128个国家的经济数据,能精确查找GDP、进出口零售,销售等深度数据。

http://www.ceicdata.com/zh-hans


中国统计信息网:国家统计局官方网站,汇集了国民经济和社会发展统计信息。

http://www.tjcn.org/


优易数据:由国家信息中心发起,国内领先的数据交易平台,很多免费数据。

http://www.youedata.com/


数据堂:同为数据交易平台,包含语音识别、医疗健康、交通地理、电子商务、社交网络、图像识别等方面的数据。

http://www.datatang.com/


另一种获取外部数据费的方式就是爬虫。


比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析。


在爬虫之前你需要先了解一些 Python 的基础知识:元素(列表、字典、元组等)、变量、循环、函数………


推荐:Python-菜鸟教程

http://www.runoob.com/python3/python3-tutorial.html


以及,还需要了解如何用 Python 库(urllib、BeautifulSoup、requests、scrapy)实现网页爬虫。如果是初学,建议从 urllib 和 BeautifulSoup 开始。(PS:后续的数据分析也需要 Python 的知识,以后遇到的问题也可以在这个教程查看)


数据存取:SQL语言


你可能有一个疑惑,为什么没有讲到Excel。在应对万以内的数据的时候,Excel对于一般的分析没有问题,一旦数据量大,就会力不从心,数据库就能够很好地解决这个问题。



而且大多数的企业,都会以SQL的形式来存储数据,如果你是一个分析师,也至少要懂得SQL的操作,能够查询、提取公司的数据。


SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。你需要掌握以下技能:


1、提取特定情况下的数据:企业数据库里的数据一定是大而繁复的,你需要提取你需要的那一部分。比如你可以根据你的需要提取2017年所有的销售数据、提取今年销量最大的50件商品的数据、提取上海、广东地区用户的消费数据……,SQL可以通过简单的命令帮你完成这些工作。


2、数据库的增、删、查、改:这些是数据库最基本的操作,但只要用简单的命令就能够实现,所以你只需要记住命令就好。


3、数据的分组聚合、如何建立多个表之间的联系:这个部分是SQL的进阶操作,多个表之间的关联,在你处理多维度、多个数据集的时候非常有用,这也让你可以去处理更复杂的数据。


SQL这个部分相对来说比较简单,可以去这个教程:


MySQL-菜鸟教程

http://www.runoob.com/mysql/mysql-tutorial.html


当然,还是建议你找几个数据集来实际操作一下,哪怕是最基础的查询、提取等。你可以去调用一些公司的数据来进行实际的演练,如果没有合适的,这里推荐UCI的经典数据集:


鸢尾花数据集

http://archive.ics.uci.edu/ml/machine-learning-databases/iris/


数据预处理:Python(pandas)


很多时候我们拿到的数据是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。


比如销售数据,有一些渠道的销售是没有及时录入的,有一些数据是记录重复的。比如用户行为数据,有很多无效的操作对分析没有意义,就需要进行删除。


那么我们需要用相应的方法去处理,比如残缺数据,我们是直接去掉这条数据,还是用临近的值去补全,这些都是需要考虑的问题。


对于数据预处理,学会 pandas (Python包)的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:


1、选择:数据访问(标签、特定值、布尔索引等)

2、缺失值处理:对缺失数据行进行删除或填充

3、重复值处理:重复值的判断与删除

4、空格和异常值处理:清除不必要的空格和极端、异常数据

5、相关操作:描述性统计、Apply、直方图等

6、合并:符合各种逻辑关系的合并操作

7、分组:数据划分、分别执行函数、数据重组

8、Reshaping:快速生成数据透视表


网上有很多 pandas 的教程,主要是一些函数的应用,也都非常简单,如果遇到问题,可以参看 pandas 操作的官方文档。


pandas 官方文档

http://pandas.pydata.org/pandas-docs/stable/tutorials.html


推荐书:《利用Python进行数据分析 》


概率论及统计学知识


数据整体分布是怎样的?什么是总体和样本?中位数、众数、均值、方差等基本的统计量如何应用?如果有时间维度的话随着时间的变化是怎样的?如何在不同的场景中做假设检验?


数据分析方法大多源于统计学的概念,所以统计学的知识也是必不可少的。需要掌握的知识点如下:


1、基本统计量:均值、中位数、众数、百分位数、极值等

2、其他描述性统计量:偏度、方差、标准差、显著性等

3、其他统计知识:总体和样本、参数和统计量、ErrorBar

4、概率分布与假设检验:各种分布、假设检验流程

5、其他概率论知识:条件概率、贝叶斯等


有了统计学的基本知识,你就可以用这些统计量做基本的分析了。通过可视化的方式来描述数据的指标,其实可以得出很多结论了:比如排名前100的是哪些,平均水平是怎样的,近几年的变化趋势如何……


你可以使用 Seaborn、matplotlib 等(python包)做一些可视化的分析,通过各种可视化统计图,并得出具有指导意义的结果。了解假设检验之后,可以对样本指标与假设的总体指标之间是否存在差别作出判断,以验证结果是否在可接受的范围。


推荐书:《深入浅出统计学》 


Python 数据分析


如果你有一些了解的话,就知道目前市面上其实有很多 Python 数据分析的书籍,但每一本都很厚,学习阻力非常大。但其实真正最有用的那部分信息,只是这些书里很少的一部分。比如用 Python 实现不同案例的假设检验,其实你就可以对数据进行很好的验证。


比如掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。这部分需要掌握的知识点如下:


1、回归分析:线性回归、逻辑回归

2、基本的分类算法:决策树、随机森林……

3、基本的聚类算法:k-means……

4、特征工程基础:如何用特征选择优化模型

5、调参方法:如何调节参数优化模型

6、Python 数据分析包:scipy、numpy、scikit-learn等


在数据分析的这个阶段,重点了解回归分析的方法,大多数的问题可以得以解决,利用描述性的统计分析和回归分析,你完全可以得到一个不错的分析结论。


当然,随着你实践量的增多,可能会遇到一些复杂的问题,你就可能需要去了解一些更高级的算法:分类、聚类。


然后你会知道面对不同类型的问题的时候更适合用哪种算法模型,对于模型的优化,你需要去学习如何通过特征提取、参数调节来提升预测的精度。


这就有点数据挖掘和机器学习的味道了,其实一个好的数据分析师,应该算是一个初级的数据挖掘工程师了。


你可以通过 Python 中的 scikit-learn 来实现数据分析、数据挖掘建模和分析的全过程。


推荐:scikit-learn官方文档

http://scikit-learn.org/dev/_downloads/scikit-learn-docs.pdf


系统实战与数据思维


到这个时候,你就已经具备了数据分析的基本能力了。但是还要根据不同的案例、不同的业务场景进行实战,练习解决实际问题的能力。如何进行实战呢?


上面提到的公开数据集,可以找一些自己感兴趣的方向的数据,尝试从不同的角度来分析,看看能够得到哪些有价值的结论。


另一个角度是,你可以从生活、工作中去发现一些可用于分析的问题,比如上面说到的电商、招聘、社交等平台等方向都有着很多可以挖掘的问题。


开始的时候,你可能考虑的问题不是很周全,但随着你经验的积累,慢慢就会找到分析的方向,有哪些一般分析的维度,比如top榜单、平均水平、区域分布、年龄分布、相关性分析、未来趋势预测等等。随着经验的增加,你会有一些自己对于数据的感觉,这就是我们通常说的数据思维了。


如果在分析思路和报告撰写过程中遇到困难,你也可以看看专业的行业分析报告,比如:


艾瑞咨询

http://www.iresearch.com.cn/


看看优秀的分析师看待问题的角度和分析问题的维度,其实你会发现养成数据思维,也并不是一件困难的事情。


来源:数据之王



想跟Data Science王牌导师面对面聊聊吗?

加小编

了解详细信息

还可以预约15分钟职业导师免费咨询~

成功

案例


Infinity往届学员成功案例

收藏 已赞